Chitinase-3-Like-1 Promotes M2 Macrophage Differentiation and Induces Choroidal Neovascularization in Neovascular Age-Related Macular Degeneration

几丁质酶-3-样-1促进M2巨噬细胞分化并诱导新生血管性年龄相关性黄斑变性中的脉络膜新生血管

阅读:6
作者:Nana Xu, Qiyu Bo, Rong Shao, Jian Liang, Yuanqi Zhai, Shiqi Yang, Fenghua Wang, Xiaodong Sun

Conclusions

These results unveil novel angiogenic regulation of CHI3L1 and M2 polarized macrophages in CNV development. These mechanistic insights may point to CHI3L1 as a new therapeutic target for treatment for nAMD.

Methods

Serums from nAMD patients were tested for CHI3L1 expression. Mice were subjected to laser injury to induce CNV, and lesion expansion were tracked using fundus fluorescence angiography (FFA) and immunofluorescence analysis. Several strategies were taken to verify the contribution of M2 macrophage and CHI3L1: macrophage depletion by clodrosome, local CHI3L1 inhibition using intravitreally injection neutralize antibody (mAY), and depletion of CHI3L1 receptor (IL13-Ra2) by small-interfering RNA (siRNA). Tuber analysis was used to further determine angiogenetic effect of CHI3L1. Anti-VEGFA was used as positive control for mAY.

Purpose

Choroidal neovascularization (CNV) is the principal pathological factor contributing to blindness in neovascular age-related macular degeneration (nAMD). Infiltration of M2 macrophage is thought to contribute to CNV progress, although the way that regulates its differentiation remains unclear. Here, we investigate the role of CHI3L1 in M2 differentiation and angiogenesis in CNV.

Results

Serum levels of CHI3L1 were highly elevated in nAMD patients. CHI3L1 was expressed by infiltrating M2 macrophages and was elevated as CNV progress in a mice model. System macrophage depletion and local suppression of CHI3L1 alleviated CNV formation while enhancing anti-VEGFA therapeutic effect. Stimulation of macrophage with recombinant CHI3L1 activated MAPK signaling cascade and induced transition to M2, while siRNA knockdown of IL13-Ra2 abolished it. In an in vitro coculture system, supernatants from CHI3L1-stimulated M2 macrophages and promoted tube vascularization. Conclusions: These results unveil novel angiogenic regulation of CHI3L1 and M2 polarized macrophages in CNV development. These mechanistic insights may point to CHI3L1 as a new therapeutic target for treatment for nAMD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。