pSer40 tyrosine hydroxylase immunohistochemistry identifies the anatomical location of C1 neurons in rat RVLM that are activated by hypotension

pSer40 酪氨酸羟化酶免疫组织化学法确定大鼠 RVLM 中由低血压激活的 C1 神经元的解剖位置

阅读:4
作者:P E Nedoboy, S Mohammed, K Kapoor, A M Bhandare, M M J Farnham, P M Pilowsky

Abstract

Identification of neurons, and their phenotype, that are activated in response to specific stimuli is a critical step in understanding how neural networks integrate inputs to produce specific outputs. Here, we developed novel mouse monoclonal antibodies of different IgG isotypes that are specific to tyrosine hydroxylase (TH), and to tyrosine hydroxylase activated at its serine 40 position (pSer40TH), in order to assess changes in the activity of phenotypically identified cardiovascular neurons using fluorescence immunohistochemistry. We find that the proportion of C1 pSer40TH-positive neurons in the central and medial region of the rat rostral ventrolateral medulla (RVLM) increases dramatically following hydralazine treatment, whereas phenylephrine treatment does not significantly change the pSer40TH/TH ratio in these regions compared to control. This finding suggests that there is a mediolateral topology associated with the activation of C1 neurons following baroreceptor loading or unloading. Overall, we conclude first, that our newly characterized monoclonal antibodies are specific, and selective, against TH and pSer40TH. Secondly, that they can be used to label TH and pSer40TH immunoreactive neurons simultaneously, and thirdly that that they can be used to identify the activation state of catecholamine synthetizing neurons after physiological stimuli. Finally, we find that there is basal level of activation of TH neurons in the lateral, central and medial regions (∼ 70%, 30% and 45%, respectively) of the C1 area, but that following unloading of the baroreceptors there is a marked increase in activation of central (∼ 80%) and medial (∼ 90%) C1 neurons in the RVLM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。