Gradient Waveguide Thickness Guided-Mode Resonance Biosensor

梯度波导厚度导模共振生物传感器

阅读:9
作者:Jia-Ming Yang, Nien-Zu Yang, Cheng-Hao Chen, Cheng-Sheng Huang

Abstract

Portable systems for detecting biomolecules have attracted considerable attention, owing to the demand for point-of-care testing applications. This has led to the development of lab-on-a-chip (LOC) devices. However, most LOCs are developed with a focus on automation and preprocessing of samples; fluorescence measurement, which requires additional off-chip detection instruments, remains the main detection method in conventional assays. By incorporating optical biosensors into LOCs, the biosensing system can be simplified and miniaturized. However, many optical sensors require an additional coupling device, such as a grating or prism, which complicates the optical path design of the system. In this study, we propose a new type of biosensor based on gradient waveguide thickness guided-mode resonance (GWT-GMR), which allows for the conversion of spectral information into spatial information such that the output signal can be recorded on a charge-coupled device for further analysis without any additional dispersive elements. A two-channel microfluidic chip with embedded GWT-GMRs was developed to detect two model assays in a buffer solution: albumin and creatinine. The results indicated that the limit of detection for albumin was 2.92 μg/mL for the concentration range of 0.8-500 μg/mL investigated in this study, and that for creatinine it was 12.05 μg/mL for the concentration range of 1-10,000 μg/mL. These results indicated that the proposed GWT-GMR sensor is suitable for use in clinical applications. Owing to its simple readout and optical path design, the GWT-GMR is considered ideal for integration with smartphones or as miniaturized displays in handheld devices, which could prove beneficial for future point-of-care applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。