Increased matrix metalloproteinase levels and perineuronal net proteolysis in the HIV-infected brain; relevance to altered neuronal population dynamics

HIV 感染者大脑中基质金属蛋白酶水平和神经元周围净蛋白水解增加;与改变的神经元群体动态相关

阅读:4
作者:P Lorenzo Bozzelli, Adam Caccavano, Valeria Avdoshina, Italo Mocchetti, Jian-Young Wu, Katherine Conant

Abstract

HIV-associated neurocognitive disorders (HAND) continue to persist despite effective control of viral replication. Although the mechanisms underlying HAND are poorly understood, recent attention has focused on altered neuronal population activity as a correlate of impaired cognition. However, while alterations in neuronal population activity in the gamma frequency range are noted in the setting of HAND, the underlying mechanisms for these changes is unclear. Perineuronal nets (PNNs) are a specialized extracellular matrix that surrounds a subset of inhibitory neurons important to the expression of neuronal oscillatory activity. In the present study, we observe that levels of PNN-degrading matrix metalloproteinases (MMPs) are elevated in HIV-infected post-mortem human brain tissue. Furthermore, analysis of two PNN components, aggrecan and brevican, reveals increased proteolysis in HIV-infected brains. In addition, local field potential recordings from ex vivo mouse hippocampal slices demonstrate that the power of carbachol-induced gamma activity is increased following PNN degradation. Together, these results provide a possible mechanism whereby increased MMP proteolysis of PNNs may stimulate altered neuronal oscillatory activity and contribute to HAND symptoms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。