Heparan sulfate proteoglycans mediate Aβ-induced oxidative stress and hypercontractility in cultured vascular smooth muscle cells

硫酸肝素蛋白聚糖介导 Aβ 诱导的培养血管平滑肌细胞氧化应激和收缩过度

阅读:4
作者:Matthew R Reynolds, Itender Singh, Tej D Azad, Brandon B Holmes, Phillip B Verghese, Hans H Dietrich, Marc Diamond, Guojun Bu, Byung Hee Han, Gregory J Zipfel

Background

Substantial evidence suggests that amyloid-β (Aβ) species induce oxidative stress and cerebrovascular (CV) dysfunction in Alzheimer's disease (AD), potentially contributing to the progressive dementia of this disease. The upstream molecular pathways governing this process, however, are poorly understood. In this report, we examine the role of heparan sulfate proteoglycans (HSPG) in Aβ-induced vascular smooth muscle cell (VSMC) dysfunction in vitro.

Conclusions

Taken together, our data indicate that HSPG are critical mediators of Aβ-induced oxidative stress and Aβ(1-40⁻)induced VSMC dysfunction.

Results

Our results demonstrate that pharmacological depletion of HSPG (by enzymatic degradation with active, but not heat-inactivated, heparinase) in primary human cerebral and transformed rat VSMC mitigates Aβ(1-40⁻) and Aβ(1-42⁻)induced oxidative stress. This inhibitory effect is specific for HSPG depletion and does not occur with pharmacological depletion of other glycosaminoglycan (GAG) family members. We also found that Aβ(1-40) (but not Aβ(1-42)) causes a hypercontractile phenotype in transformed rat cerebral VSMC that likely results from a HSPG-mediated augmentation in intracellular Ca(2+) activity, as both Aβ(1-40⁻)induced VSMC hypercontractility and increased Ca(2+) influx are inhibited by pharmacological HSPG depletion. Moreover, chelation of extracellular Ca(2+) with ethylene glycol tetraacetic acid (EGTA) does not prevent the production of Aβ(1-40⁻) or Aβ(1-42⁻)mediated reactive oxygen species (ROS), suggesting that Aβ-induced ROS and VSMC hypercontractility occur through different molecular pathways. Conclusions: Taken together, our data indicate that HSPG are critical mediators of Aβ-induced oxidative stress and Aβ(1-40⁻)induced VSMC dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。