Marine derived xyloketal derivatives exhibit anti-stress and anti-ageing effects through HSF pathway in Caenorhabditis elegans

海洋来源的木酮缩醛衍生物通过 HSF 通路在秀丽隐杆线虫中表现出抗应激和抗衰老作用

阅读:9
作者:Jie-Bin Zhou, Ying-Lin Zheng, Yi-Xuan Zeng, Jia-Wei Wang, Zhong Pei, Ji-Yan Pang

Abstract

Ageing is a complex but universal phenomenon that progressively challenges the homeostasis network and finally leads to the dysfunction of organisms and even death. Previous studies demonstrated that xyloketal B and its derivatives, a series of marine novel ketone compounds, possessed unique antioxidative effects on endothelial and neuronal oxidative injuries. In this study, we examined the effects of xyloketal derivatives on extending lifespan and healthspan of Caenorhabditis elegans. The results showed that most selected xyloketals could protect Caenorhabditis elegans against heat stress and extend the lifespan of worms. Compound 15, a benzo-1, 3-oxazine xyloketal derivative, possessed most potent effect in anti-heat stress assay and significantly attenuated ageing-related decrease of pumping and bending of the worms in healthspan assay. In addition, the beneficial effect of 15 was abolished in PS3551 worms, a strain that possesses non-functional heat shock transcription factor-1 (HSF-1). Furthermore, 15 increased the expression of heat shock protein 70 (HSP70), a downstream molecular chaperone of HSF-1. These results indicated that HSF-1 might contribute to the protective effect of this compound in Caenorhabditis elegans ageing. Molecular docking studies suggested that these xyloketal derivatives were bound to the DNA binding domain of HSF-1, promoted the conformation of HSF-1, thus strengthened the interaction between the HSF-1 and related DNA. ALA-67, ASN-74 and LYS-80 of binding region might be the key amino residues during the interaction. Finally, compound 15 could reduce the paralysis of the CL4176 worms, a transgenic strain expressing human Aβ3-42 under a temperature-inducible system. Collectively, these data indicate that xyloketals have potential implications for further evaluation in anti-ageing studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。