Solvent Effect on the Solvothermal Synthesis of Mesoporous NiO Catalysts for Activation of Peroxymonosulfate to Degrade Organic Dyes

溶剂热合成介孔 NiO 催化剂及活化过氧单硫酸盐降解有机染料的溶剂效应

阅读:5
作者:Yajie Gu, Shengrui Sun, Yangqiao Liu, Manjiang Dong, Qingfeng Yang

Abstract

In this work, we successfully prepared three different mesoporous NiO nanostructures with preferential (111) planes using three different solvents-water, a water-ethanol mixture, and a water-ethylene glycol mixture. The NiO nanosheets prepared from the water-ethylene glycol mixture and denoted as NiO-EG showed a nanosheet morphology thinner than 10 nm, whereas the water-ethanol and water samples were 30-40 nm and above 100 nm thick, respectively. The NiO-EG catalyst was found to exhibit a high catalyzing ability to activate peroxymonosulfate (PMS) for decoloring dyes, by which 94.4% of acid orange 7 (AO7) was degraded under the following reaction conditions: AO7 = 50 mg/L, catalyst = 0.2 g/L, PMS = 0.8 g/L, pH = 7, and 30 min reaction time. The dye degradation rate was investigated as a function of the catalyst dosage, pH, and dye concentration. According to quenching experiments, it was found that SO4 •-, HO•, and O2 •- were the dominant radicals for AO7 degradation, and oxygen vacancies played a significant role in the generation of radicals. High surface area, thin flaky structure, rich oxygen vacancies, fast charge transport, and low diffusion impedance all enhanced the catalytic activity of NiO-EG, which exhibited the highest degradation ability due to its abundant accessible active sites for both adsorption and catalysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。