Mechanism of Musashi2 affecting radiosensitivity of lung cancer by modulating DNA damage repair

Musashi2调控DNA损伤修复影响肺癌放射敏感性的机制

阅读:5
作者:Hongjin Qu, Xiong Shi, Ying Xu, Hongran Qin, Junshi Li, Shanlin Cai, Jianpeng Zhao, Bingbing Wan, Yanyong Yang, Bailong Li

Abstract

Identifying new targets for overcoming radioresistance is crucial for improving the efficacy of lung cancer radiotherapy, given that tumor cell resistance is a leading cause of treatment failure. Recent research has spotlighted the significance of Musashi2 (MSI2) in cancer biology. In this study, we first demonstrated that MSI2 plays a key function in regulating the radiosensitivity of lung cancer. The expression of MSI2 is negatively correlated with overall survival in cancer patients, and the knockdown of MSI2 inhibits tumorigenesis and increases radiosensitivity of lung cancer cells. Cellular radiosensitivity, which is closely linked to DNA damage, is influenced by MSI2 interaction with ataxia telangiectasia mutated and Rad3-related kinase (ATR) and checkpoint kinase 1 (CHK1) post-irradiation; moreover, knockdown of MSI2 inhibits the ATR-mediated DNA damage response pathway. RNA-binding motif protein 17 (RBM17), which is implicated in DNA damage repair, exhibits increased interaction with MSI2 post-irradiation. We found that knockdown of RBM17 disrupted the interaction between MSI2 and ATR post-irradiation and increased the radiosensitivity of lung cancer cells. Furthermore, we revealed the potential mechanism of MSI2 recruitment into the nucleus with the assistance of RBM17 to activate ATR to promote radioresistance. This study provides novel insights into the potential application of MSI2 as a new target in lung cancer radiotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。