Distinct deep short-axon cell subtypes of the main olfactory bulb provide novel intrabulbar and extrabulbar GABAergic connections

主嗅球的不同深短轴突细胞亚型提供了新的球内和球外 GABA 能连接

阅读:5
作者:Mark D Eyre, Miklos Antal, Zoltan Nusser

Abstract

A universal feature of neuronal microcircuits is the presence of GABAergic interneurons that control the activity of glutamatergic principal cells and each other. In the rat main olfactory bulb (MOB), GABAergic granule and periglomerular cells innervate mitral and tufted cells, but the source of their own inhibition remains elusive. Here, we used a combined electrophysiological and morphological approach to investigate a rather mysterious cell population of the MOB. Deep short-axon cells (dSACs) of the inframitral layers are GABAergic and have extensive and characteristic axonal ramifications in various layers of the bulb, based on which unsupervised cluster analysis revealed three distinct subtypes. Each dSAC subtype exhibits different electrical properties but receives similar GABAergic and glutamatergic inputs. The local axon terminals of all dSAC subtypes selectively innervate GABAergic granule and periglomerular cells and evoke GABA(A) receptor-mediated IPSCs. One subpopulation of dSACs (GL-dSACs) creates a novel intrabulbar projection from deep to superficial layers. Another subpopulation (GCL-dSACs) is labeled by retrogradely transported fluorescent microspheres injected into higher olfactory areas, constituting a novel projection-cell population of the MOB. Our results reveal multiple dSAC subtypes, each specialized to influence MOB activity by selectively innervating GABAergic interneurons, and provide direct evidence for novel intrabulbar and extrabulbar GABAergic projections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。