Anastasis Drives Senescence and Non-Cell Autonomous Neurodegeneration in the Astrogliopathy Alexander Disease

Anastasis 驱动星形胶质病亚历山大病中的衰老和非细胞自主神经变性

阅读:5
作者:Liqun Wang, Hassan Bukhari, Linghai Kong, Tracy L Hagemann, Su-Chun Zhang, Albee Messing, Mel B Feany

Abstract

Anastasis is a recently described process in which cells recover after late-stage apoptosis activation. The functional consequences of anastasis for cells and tissues are not clearly understood. Using Drosophila, rat and human cells and tissues, including analyses of both males and females, we present evidence that glia undergoing anastasis in the primary astrogliopathy Alexander disease subsequently express hallmarks of senescence. These senescent glia promote non-cell autonomous death of neurons by secreting interleukin family cytokines. Our findings demonstrate that anastasis can be dysfunctional in neurologic disease by inducing a toxic senescent population of astroglia.SIGNIFICANCE STATEMENT Under some conditions cells otherwise destined to die can be rescued just before death in a process called anastasis, or "rising from the dead." The fate and function of cells undergoing a near death experience is not well understood. Here, we find that in models and patient cells from Alexander disease, an important brain disorder in which glial cells promote neuronal dysfunction and death, anastasis of astrocytic glia leads to secretion of toxic signaling molecules and neurodegeneration. These studies demonstrate a previously unexpected deleterious consequence of rescuing cells on the brink of death and suggest therapeutic strategies for Alexander disease and related disorders of glia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。