Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer's disease mice

老年阿尔茨海默病小鼠的小胶质细胞功能障碍和β-淀粉样蛋白清除途径缺陷

阅读:5
作者:Suzanne E Hickman, Elizabeth K Allison, Joseph El Khoury

Abstract

Early microglial accumulation in Alzheimer's disease (AD) delays disease progression by promoting clearance of beta-amyloid (Abeta) before formation of senile plaques. However, persistent Abeta accumulation despite increasing microglial numbers suggests that the ability of microglia to clear Abeta may decrease with age and progression of AD pathology. To determine the effects of aging and Abeta deposition on microglial ability to clear Abeta, we used quantitative PCR to analyze gene expression in freshly isolated adult microglia from 1.5-, 3-, 8-, and 14-month-old transgenic PS1-APP mice, an established mouse model of AD, and from their nontransgenic littermates. We found that microglia from old PS1-APP mice, but not from younger mice, have a twofold to fivefold decrease in expression of the Abeta-binding scavenger receptors scavenger receptor A (SRA), CD36, and RAGE (receptor for advanced-glycosylation endproducts), and the Abeta-degrading enzymes insulysin, neprilysin, and MMP9, compared with their littermate controls. In contrast, PS1-APP microglia had a 2.5-fold increase in the proinflammatory cytokines IL-1beta (interleukin-1beta) and tumor necrosis factor alpha (TNFalpha), suggesting that there is an inverse correlation between cytokine production and Abeta clearance. In support of this possibility, we found that incubation of cultured N9 mouse microglia with TNFalpha decreased the expression of SRA and CD36 and reduced Abeta uptake. Our data indicate that, although early microglial recruitment promotes Abeta clearance and is neuroprotective in AD, as disease progresses, proinflammatory cytokines produced in response to Abeta deposition downregulate genes involved in Abeta clearance and promote Abeta accumulation, therefore contributing to neurodegeneration. Antiinflammatory therapy for AD should take this dichotomous microglial role into consideration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。