GDF-5 promotes epidermal stem cells proliferation via Foxg1-cyclin D1 signaling

GDF-5 通过 Foxg1-cyclin D1 信号促进表皮干细胞增殖

阅读:9
作者:Xiaohong Zhao, Ruyu Bian, Fan Wang, Ying Wang, Xue Li, Yicheng Guo, Xiaorong Zhang, Gaoxing Luo, Rixing Zhan

Conclusion

This paper showed that GDF-5 promotes mouse EpSCs proliferation via Foxg1-cyclin D1 signal pathway. It is suggested that GDF-5 may be a new approach to make EpSCs proliferation which can be used in wound healing.

Methods

Firstly, the effects of GDF-5 on EpSCs proliferation was tested by using CCK8 reagent and PCNA expression was analyzed by Western blotting. Secondly, we screened genes that promote EpSCs proliferation in the FOX and cyclin family by qPCR, and then the protein expression level of the selected genes was further analyzed by Western blotting. Thirdly, siRNA plasmids and pAdEasy adenovirus were transfected or infected, respectively, into mouse EpSCs to detect the effect of target genes on GDF-5-induced cell proliferation. Furthermore, we injected GDF-5 to a deep partial thickness burn mouse model for finding out whether EpSCs proliferation can be detected by immunohistochemical. Finally, the relevant target genes were analyzed by qPCR, immunoblotting, and dual-luciferase reporter gene detection.

Objective

Epidermal stem cells (EpSCs) can self-renew, which are responsible for the long-term maintenance of the skin, and it also plays a critical role in wound re-epithelization, but the mechanism underlying EpSCs proliferation is unclear. GDF-5, also known as BMP-14, is a member of the BMP family and can be used as a self-renewal supporter. Here, we studied the effects of GDF-5 on mouse EpSCs proliferation mechanism in wound healing.

Results

We discovered that 100 ng/ml recombinant mouse GDF-5 was the optimal concentration for promoting mouse EpSCs proliferation. Through preliminary screened by qPCR, we found that Foxg1 and cyclin D1 could be the downstream molecules of GDF-5, and the results were confirmed by Western blotting. And the effect of GDF-5 on mouse EpSCs proliferation was adjusted by Foxg1/cyclin D1 in vitro and in vivo. Besides, GDF-5-induced transcription of cyclin D1 was regulated by Foxg1-mediated cyclin D1 promoter activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。