Enhanced Photocatalytic Degradation of Rhodamine B Dye by Iron-Doped Europium Oxide Nanoparticles

铁掺杂的氧化铕纳米粒子增强罗丹明 B 染料的光催化降解

阅读:5
作者:Xin Zhao, Yishuai Jing, Zhonghua Dai, Yuanbo Chu, Zhenyu Liu, Yu Cong, Jiaming Song

Abstract

As a wide-bandgap rare-earth oxide, Eu2O3 was often utilized as an auxiliary material of other photocatalysts because its photocatalytic performance was limited by the luminescence characteristics of Eu3+ and low light utilization. In this study, we improved the photocatalytic degradation performance of the Eu2O3 nanoparticles by doping with Fe cations. The Eu2O3 nanoparticles with different Fe-doping concentrations (1, 3, and 5%, noted as EF1.0, EF3.0, and EF5.0, respectively) were synthesized via chemical precipitation and calcination methods. It was found that doping could reduce Eu2O3's bandgap, which probably originated from the introduction of oxygen vacancies with lower energy levels than the conduction band of Eu2O3. Compared with the undoped Eu2O3 nanoparticles with a removal efficiency of 22% for degrading rhodamine B dye within 60 min, the photocatalytic degradation efficiencies of EF1.0, EF3.0, and EF5.0 were demonstrated to be improved to 42, 48, and 33%, respectively, and EF3.0's performance was the best. The enhanced photocatalytic performance of the doped samples was related to the oxygen vacancies acting as capture centers for electrons, such that the photogenerated electron-hole pairs were efficiently separated and the redox reactions on the surface of the nanoparticles were enhanced accordingly. Additionally, the enhanced light absorption and broadened spectral band further improved EF3.0's degradation efficiency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。