Sustained activation of N-methyl-D-aspartate receptors in podoctyes leads to oxidative stress, mobilization of transient receptor potential canonical 6 channels, nuclear factor of activated T cells activation, and apoptotic cell death

足细胞中 N-甲基-D-天冬氨酸受体的持续激活会导致氧化应激、瞬时受体电位典型 6 通道的动员、活化 T 细胞的核因子活化以及细胞凋亡

阅读:9
作者:Eun Young Kim, Marc Anderson, Stuart E Dryer

Abstract

Atypical N-methyl-D-aspartate (NMDA) receptors are expressed in podocytes. Sustained (≥24 h) application of 50 to100 μM NMDA to immortalized mouse podocytes evoked a marked increase in the production of reactive oxygen species(ROS) such as H&sub2;O&sub2;. This effect of NMDA was associated with increased cell-surface expression of p47(phox), a cytosolic regulatory subunit of the NADPH oxidase NOX2. NMDA-evoked generation of ROS drove an increase in steady-state surface expression of transient receptor potential canonical (TRPC) 6 channels, which was blocked by the NMDA antagonist dizocilpine(MK-801) and by a membrane-permeable scavenger of ROS. The effect of NMDA on TRPC6 was observed using cell surface biotinylation assays and also with whole-cell recordings made under conditions designed to facilitate detection of current through TRPC6. NMDA mobilization of TRPC6 channels was blocked by concurrent treatment with the NMDA antagonist MK-801 and by a membrane-permeable scavenger ofROS. Mobilization of TRPC6 was also evoked by L-homocysteic acid. NMDA treatment also increased nuclear localization of endogenous nuclear factor of activated T cells, which could be blocked by MK-801, by scavenging ROS, by the calcineurin inhibitor cyclosporine, and by the TRPC channel inhibitor 1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl)propoxy]ethyl]imidazole (SKF-96365). NMDA treatment also evoked robust activation of Rho but not Rac,consistent with previous studies of downstream effectors of TRPC6 activation. Exposing cells to NMDA for 24 h reduced total and cell surface expression of the podocyte markers nephrin and podocin, but there was no loss of cells. With longer NMDA exposure (72 h), we observed loss of cells associated with nuclear fragmentation and increased expression of caspase-3, caspase-6, and Bax, suggesting an apoptotic process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。