The use of matrigel has no influence on tumor development or PET imaging in FaDu human head and neck cancer xenografts

使用基质胶对 FaDu 人类头颈癌异种移植瘤中的肿瘤发展或 PET 成像没有影响

阅读:5
作者:Frederikke P Fliedner, Anders E Hansen, Jesper T Jørgensen, Andreas Kjær

Background

In preclinical research Matrixgel(TM) Basement Membrane Matrix (MG) is used frequently for the establishment of syngeneic and xenograft cancer models. Limited information on its influence on parameters including; tumor growth, vascularization, hypoxia and imaging characteristics is currently available. This study evaluates the potential effect of matrigel use in a human head and neck cancer xenograft model (FaDu; hypopharyngeal carcinoma) in NMRI nude mice. The FaDu cell line was chosen based on its frequent use in studies of cancer imaging and tumor microenvironment.

Conclusions

Matrigel did not affect tumor growth or tumor take for the FaDu xenograft model evaluated. Tumors in the -MG group displayed increased angiogenesis compared to the +MG tumors. No difference in (18)F-FDG PET uptake for tumors of different groups was found. Based on these observations the influence of matrigel on tumor imaging and tumor microenvironment seems minor for this particular xenograft model.

Methods

NMRI nude mice (n = 34) were divided into two groups and subcutaneously injected with FaDu cells in medium either including (+MG) or excluding matrigel (-MG). In sub study I seven mice from each group (+MG, n = 7; -MG, n = 7) were (18)F- fluorodeoxyglucose ((18)F-FDG) PET/CT scanned on Day 5, 8, 12, 15, and 19. In sub study II ten mice from each group (+MG, n = 10; -MG, n = 10) were included and tumors collected for immunohistochemistry (IHC) analysis of tumor microenvironment including; proliferation ratio, micro vessel density, average vessel area, hypoxia, nuclear density, and necrosis. Tumors for IHC were collected according to size (200-400 mm(3), 500-700 mm(3), 800-1100 mm(3)).

Results

FDG uptake and tumor growth was statistically compatible for the tumors established with or without MG. The IHC analysis on all parameters only identified a significantly higher micro vessel density for tumor size 500-700 mm(3) and 800-1100 mm(3) and average vessel area for tumor size 500-700 mm(3) in the -MG group. Comparable variations were observed for tumors of both the +MG and -MG groups. No difference in tumor take rate was observed between groups in study. Conclusions: Matrigel did not affect tumor growth or tumor take for the FaDu xenograft model evaluated. Tumors in the -MG group displayed increased angiogenesis compared to the +MG tumors. No difference in (18)F-FDG PET uptake for tumors of different groups was found. Based on these observations the influence of matrigel on tumor imaging and tumor microenvironment seems minor for this particular xenograft model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。