N-glycan-mediated quality control in the endoplasmic reticulum is required for the expression of correctly folded delta-opioid receptors at the cell surface

内质网中 N-糖介导的质量控制是细胞表面正确折叠的 δ-阿片受体表达所必需的

阅读:5
作者:Piia M H Markkanen, Ulla E Petäjä-Repo

Abstract

A great majority of G protein-coupled receptors are modified by N-glycosylation, but the functional significance of this modification for receptor folding and intracellular transport has remained elusive. Here we studied these phenomena by mutating the two N-terminal N-glycosylation sites (Asn(18) and Asn(33)) of the human delta-opioid receptor, and expressing the mutants from the same chromosomal integration site in stably transfected inducible HEK293 cells. Both N-glycosylation sites were used, and their abolishment decreased the steady-state level of receptors at the cell surface. However, pulse-chase labeling, cell surface biotinylation, and immunofluorescence microscopy revealed that this was not because of intracellular accumulation. Instead, the non-N-glycosylated receptors were exported from the endoplasmic reticulum with enhanced kinetics. The results also revealed differences in the significance of the individual N-glycans, as the one attached to Asn(33) was found to be more important for endoplasmic reticulum retention of the receptor. The non-N-glycosylated receptors did not show gross functional impairment, but flow cytometry revealed that a fraction of them was incapable of ligand binding at the cell surface. In addition, the receptors that were devoid of N-glycans showed accelerated turnover and internalization and were targeted for lysosomal degradation. The results accentuate the importance of protein conformation-based screening before export from the endoplasmic reticulum, and demonstrate how the system is compromised when N-glycosylation is disrupted. We conclude that N-glycosylation of the delta-opioid receptor is needed to maintain the expression of fully functional and stable receptor molecules at the cell surface.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。