Characterizing Hox genes in mayflies (Ephemeroptera), with Hexagenia limbata as a new mayfly model

以 Hexagenia limbata 为新蜉蝣模型,鉴定蜉蝣 (Ephemeroptera) 中的 Hox 基因

阅读:5
作者:Christopher J Gonzalez, Tobias R Hildebrandt, Brigid O'Donnell

Background

Hox genes are key regulators of appendage development in the insect body plan. The body plan of mayfly (Ephemeroptera) nymphs differs due to the presence of abdominal appendages called gills. Despite mayflies' phylogenetic position in Paleoptera and novel morphology amongst insects, little is known of their developmental genetics, such as the appendage-regulating Hox genes. To address this issue we present an annotated, early instar transcriptome and embryonic expression profiles for Antennapedia, Ultrabithorax, and Abdominal A proteins in the mayfly Hexagenia limbata, identify putative Hox protein sequences in the mayflies H. limbata, Cloeon dipterum, and Ephemera danica, and describe the genomic organization of the Hox gene cluster in E. danica.

Conclusions

We present evidence that mayfly Hox peptide sequences and the embryonic expression patterns for Antp, Ubx, and Abd-A are extensively conserved with other insects, as is organization of the mayfly Hox gene cluster. The protein data suggest mayfly Antp, Ubx, and Abd-A play appendage promoting and repressing roles during embryogenesis in the thorax and abdomen, respectively, as in other insects. The identified expression of eight Hox genes, including Ubx and abd-A, in early instar nymphs further indicates a post-embryonic role, possibly in gill development. These data provide a basis for H. limbata as a complementary Ephemeridae model to the growing repertoire of mayfly model species and molecular techniques.

Results

Transcriptomic sequencing of early instar H. limbata nymphs yielded a high-quality assembly of 83,795 contigs, of which 22,975 were annotated against Folsomia candida, Nilaparvata lugens, Zootermopsis nevadensis and UniRef90 protein databases. Homeodomain protein phylogeny and peptide annotations identified coding sequences for eight of the ten canonical Hox genes (excluding zerknüllt/Hox3 and fushi tarazu) in H. limbata and C. dipterum, and all ten in E. danica. Mayfly Hox protein sequences and embryonic expression patterns of Antp, Ubx, and Abd-A appear highly conserved with those seen in other non-holometabolan insects. Similarly, the genomic organization of the Hox cluster in E. danica resembles that seen in most insects. Conclusions: We present evidence that mayfly Hox peptide sequences and the embryonic expression patterns for Antp, Ubx, and Abd-A are extensively conserved with other insects, as is organization of the mayfly Hox gene cluster. The protein data suggest mayfly Antp, Ubx, and Abd-A play appendage promoting and repressing roles during embryogenesis in the thorax and abdomen, respectively, as in other insects. The identified expression of eight Hox genes, including Ubx and abd-A, in early instar nymphs further indicates a post-embryonic role, possibly in gill development. These data provide a basis for H. limbata as a complementary Ephemeridae model to the growing repertoire of mayfly model species and molecular techniques.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。