Potential role of the hydroxyl carboxylic acid receptor type 2 (HCAR2) in microglia pathophysiology: A possible cross-talk with C-X-C chemokine receptor 1 (CXCR1)

羟基羧酸受体 2 型 (HCAR2) 在小胶质细胞病理生理学中的潜在作用:可能与 CXC 趋化因子受体 1 (CXCR1) 发生串扰

阅读:7
作者:Michela Perrone, Martina Pagano, Carmela Belardo, Flavia Ricciardi, Federica Ricciardi, Antimo Fusco, Maria Consiglia Trotta, Rosmara Infantino, Francesca Gargano, Andrea Parente, Rosa Giacca, Gorizio Pieretti, Livio Luongo, Sabatino Maione, Serena Boccella, Francesca Guida

Abstract

Following insults or injury, microglia cells are activated contributing to the cytotoxic response or by promoting an immune-mediated damage resolution. Microglia cells express HCA2R, a hydroxy carboxylic acid (HCA) receptor, which has been shown to mediate neuroprotective and anti-inflammatory effects. In this study we found that HCAR2 expression levels were increased in cultured rat microglia cells after Lipopolysaccharide (LPS) exposure. In a similar fashion, the treatment with MK 1903, a potent full agonist of HCAR2, increased the receptor protein levels. Moreover, HCAR2 stimulation prevented i) cells viability ii) morphological activation iii) pro/anti-inflammatory mediators production in LPS-treated cells. Likewise, HCAR2 stimulation reduced the proinflammatory mediators mRNA expression induced by neuronal chemokine fractalkine (FKN), a neuronal derived chemokine activating its unique receptor, chemokine receptor 1 (CX3CR1) on microglia surface. Interestingly, electrophysiological recordings in vivo revealed that MK1903 was able to prevent the increase of the nociceptive neurons (NS) firing activity mediated by the spinal FKN application in healthy rats. Collectively, our data demonstrate that HCAR2 is functionally expressed in microglia, by showing its capability to shift microglia toward an anti-inflammatory phenotype. Moreover, we indicated the contribute of HCAR2 in the FKN signaling and suggested a possible HCAR2/CX3CR1 functional interaction. This study paves the way for further investigations aimed at understanding the role HCAR2 as potential target in neuroinflammation-based CNS disorders. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。