Molecular Cloning and AlphaFold Modeling of Thyrotropin (ag-TSH) From the Amazonian Fish Pirarucu (Arapaima gigas)

亚马逊巨骨舌鱼 (Arapaima gigas) 促甲状腺激素 (ag-TSH) 的分子克隆和 AlphaFold 建模

阅读:7
作者:Renan Passos Freire, Jorge Enrique Hernandez-Gonzalez, Eliana Rosa Lima, Miriam Fussae Suzuki, João Ezequiel de Oliveira, Lucas Simon Torai, Paolo Bartolini, Carlos Roberto Jorge Soares

Abstract

Arapaima gigas, known as Pirarucu in Brazil, is one of the largest freshwater fish in the world. Some individuals could reach 3 m in length and weight up to 200 kg. Due to extinction risks and its economic value, the species has been a focus for preservation and reproduction studies. Thyrotropin (TSH) is a glycoprotein hormone formed by 2 subunits α and β whose main activity is related to the synthesis of thyroid hormones (THs)-T3 and T4. In this work, we present a combination of bioinformatics tools to identify Arapaima gigas βTSH (ag-βTSH), modeling its molecular structure and express the recombinant heterodimer form in mammalian cells. Using the combination of computational biology, based on genome-related information, in silico molecular cloning and modeling led to confirm results of the ag-βTSH sequence by reverse transcriptase-polymerase chain reaction (RT-PCR) and transient expression in human embryonic kidney (HEK293F) cells. Molecular cloning of ag-βTSH retrieved 146 amino acids with a signal peptide of 21 amino acid residues and 6 disulfide bonds. The sequence has a similarity to 39 fish species, ranging between 43.1% and 81.6%, whose domains are extremely conserved, such as cystine knot motif and N-glycosylation site. The Arapaima gigas thyrotropin (ag-TSH) model, solved by AlphaFold, was used in molecular dynamics simulations with Scleropages formosus receptor, providing similar values of free energy ΔGbind and ΔGPMF in comparison with Homo sapiens model. The recombinant expression in HEK293F cells reached a yield of 25 mg/L, characterized via chromatographic and physical-chemical techniques. This work shows that other Arapaima gigas proteins could be studied in a similar way, using the combination of these techniques, recovering more information from its genome and improving the reproduction and preservation of this prehistoric fish.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。