ETAR silencing ameliorated neurovascular injury after SAH in rats through ERK/KLF4-mediated phenotypic transformation of smooth muscle cells

ETAR 沉默通过 ERK/KLF4 介导的平滑肌细胞表型转化改善大鼠 SAH 后的神经血管损伤

阅读:5
作者:Zhaosi Zhang, Hong Chen, Liu Liu, Guosheng Zhao, Junchi He, Han Liu, Chao Zhou, Xiaoshuang Liu, Xiaochuan Sun, Zongduo Guo

Abstract

Subarachnoid haemorrhage (SAH) is a devastating cerebrovascular disease which has a high morbidity and mortality. The phenotypic transformation of smooth muscle cells (SMCs) lead to neurovascular injury after SAH. However, the underlying mechanism remains unclear. In the present study, we aimed to investigate the potential role of ET-1/ETAR on the phenotypic transformation of SMCs after SAH. The models of SAH were established in vivo and vitro. We observed ET-1 secretion by endothelial cells was increased, and the phenotypic transformation of SMCs was aggravated after SAH. Knocking down ETAR inhibited the phenotypic transformation of SMCs, decreased the migration ability of SMCs in vitro. Moreover, Knocking down ETAR ameliorated cerebral ischaemia and alleviated dysfunction of neurological function in vivo. In addition, Exogenous ET-1 increased the migration ability of SMCs and aggravated the phenotypic transformation of SMCs in vitro, which were partly reversed by the antagonist of Erk1/2 - SCH772984. Taken together, our results demonstrated that endothelial ET-1 aggravated the phenotypic transformation of SMCs after SAH. Knocking down ETAR inhibited the phenotypic transformation of SMCs through ERK/KLF4 thus ameliorating neurovascular injury after SAH. We also revealed that ET-1/ETAR is a potential therapeutic target after SAH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。