Establishment of a Genome Editing Tool Using CRISPR-Cas9 in Chlorella vulgaris UTEX395

利用 CRISPR-Cas9 在小球藻 UTEX395 中建立基因组编辑工具

阅读:5
作者:Jongrae Kim, Kwang Suk Chang, Sangmuk Lee, EonSeon Jin

Abstract

To date, Chlorella vulgaris is the most used species of microalgae in the food and feed additive industries, and also considered as a feasible cell factory for bioproducts. However, the lack of an efficient genetic engineering tool makes it difficult to improve the physiological characteristics of this species. Therefore, the development of new strategic approaches such as genome editing is trying to overcome this hurdle in many research groups. In this study, the possibility of editing the genome of C. vulgaris UTEX395 using clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) has been proven to target nitrate reductase (NR) and adenine phosphoribosyltransferase (APT). Genome-edited mutants, nr and apt, were generated by a DNA-mediated and/or ribonucleoprotein (RNP)-mediated CRISPR-Cas9 system, and isolated based on the negative selection against potassium chlorate or 2-fluoroadenine in place of antibiotics. The null mutation of edited genes was demonstrated by the expression level of the correspondent proteins or the mutation of transcripts, and through growth analysis under specific nutrient conditions. In conclusion, this study offers relevant empirical evidence of the possibility of genome editing in C. vulgaris UTEX395 by CRISPR-Cas9 and the practical methods. Additionally, among the generated mutants, nr can provide an easier screening strategy during DNA transformation than the use of antibiotics owing to their auxotrophic characteristics. These results will be a cornerstone for further advancement of the genetics of C. vulgaris.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。