Programmed Death Ligand-1 on Microglia Regulates Th1 Differentiation via Nitric Oxide in Experimental Autoimmune Encephalomyelitis

小胶质细胞上的程序性死亡配体-1 通过一氧化氮调节实验性自身免疫性脑脊髓炎中的 Th1 分化

阅读:5
作者:Jingxia Hu, Hao He, Zhengang Yang, Guangming Zhu, Li Kang, Xiuli Jing, Hai Lu, Wengang Song, Bo Bai, Hua Tang

Abstract

Microglia are considered to be potential antigen-presenting cells and have the ability to present antigen under pathological conditions. Nevertheless, whether and how microglia are involved in immune regulation are largely unknown. Here, we investigated the suppressive activity of microglia during experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein, with the goal of understanding their role in regulating the T cell reaction. Using flow cytometric analysis, we found that microglia were characterized by increased cell number and up-regulated programmed death ligand-1 (PD-L1) at the peak phase of EAE. Meanwhile, both the CD4(+) T cells and microglia that infiltrated the central nervous system expressed higher levels of PD1, the receptor for PD-L1, accompanied by a decline of Th1 cells. In an ex vivo co-culture system, microglia from EAE mice inhibited the proliferation of antigen-specific CD4(+) T cells and the differentiation of Th1 cells, and this was significantly inhibited by PD-L1 blockade. Further, microglia suppressed Th1 cells via nitric oxide (NO), the production of which was dependent on PD-L1. Thus, these data suggest a scenario in which microglia are involved in the regulation of EAE by suppressing Th1-cell differentiation via the PD-L1-NO pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。