Rauwolfia polysaccharide can inhibit the progress of ulcerative colitis through NOS2-mediated JAK2/STAT3 pathway

萝芙木多糖通过NOS2介导JAK2/STAT3通路抑制溃疡性结肠炎进展

阅读:5
作者:Haidong Wu, Fan Jiang, Wei Yuan, Ye Zhao, Ning Liu, Xinpu Miao

Background

Ulcerative colitis (UC) is an inflammatory disease of the digestive tract. Rauwolfia polysaccharide (Rau) has therapeutic effects on colitis in mice, but its mechanism of action needs to be further clarified. In the study, we explored the effect of Rau on the UC cell model induced by Lipopolysaccharide (LPS).

Conclusion

In short, Rauwolfia polysaccharide can inhibit the progress of ulcerative colitis through NOS2-mediated JAK2/STAT3 pathway. This study provides a theoretical clue for the treatment of UC by Rau.

Methods

We constructed a UC cell model by stimulating HT-29 cells with LPS. Dextran sodium sulfate (DSS) was used to induce mice to construct an animal model of UC. Subsequently, we performed Rau administration on the UC cell model. Then, the therapeutic effect of Rau on UC cell model and was validated through methods such as Cell Counting Kit-8 (CCK8), Muse, Quantitative real‑time polymerase chain reaction (RT-qPCR), Western blotting, and Enzyme-linked immunosorbent assay (ELISA).

Results

The results showed that Rau can promote the proliferation and inhibit the apoptosis of the HT-29 cells-induced by LPS. Moreover, we observed that Rau can inhibit the expression of NOS2/JAK2/STAT3 in LPS-induced HT-29 cells. To further explore the role of NOS2 in UC progression, we used siRNA technology to knock down NOS2 and search for its mechanism in UC. The results illustrated that NOS2 knockdown can promote proliferation and inhibit the apoptosis of LPS-induced HT-29 cells by JAK2/STAT3 pathway. In addition, in vitro and in vivo experiments, we observed that the activation of the JAK2/STAT3 pathway can inhibit the effect of Rau on DSS-induced UC model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。