Sinapic acid modulates oxidative stress and metabolic disturbances to attenuate ovarian fibrosis in letrozole-induced polycystic ovary syndrome SD rats

芥子酸调节氧化应激和代谢紊乱以减轻来曲唑诱发的多囊卵巢综合征 SD 大鼠的卵巢纤维化

阅读:5
作者:Huan Lan, Zhe-Wen Dong, Ming-Yu Zhang, Wan-Ying Li, Chao-Jie Chong, Ya-Qi Wu, Zi-Xian Wang, Jun-Yang Liu, Zhi-Qiang Liu, Xiao-Hui Qin, Tie-Min Jiang, Jia-Le Song

Abstract

Sinapic acid (SA) is renowned for its many pharmacological activities as a polyphenolic compound. The cause of polycystic ovary syndrome (PCOS), a commonly encountered array of metabolic and hormonal abnormalities in females, has yet to be determined. The present experiment was performed to evaluate the antifibrotic properties of SA in rats with letrozole-induced PCOS-related ovarian fibrosis. SA treatment successfully mitigated the changes induced by letrozole in body weight (BW) (p < .01) and relative ovary weight (p < .05). Histological observation revealed that SA reduced the number of atretic and cystic follicles (AFs) and (CFs) (p < .01), as well as ovarian fibrosis, in PCOS rats. Additionally, SA treatment impacted the serum levels of sex hormones in PCOS rats. Luteinizing hormone (LH) and testosterone (T) levels were decreased (p < .01, p < .05), and follicle-stimulating hormone (FSH) levels were increased (p < .05). SA administration also decreased triglyceride (TG) (p < .01) and total cholesterol (TC) levels (p < .05) and increased high-density lipoprotein cholesterol (HDL-C) levels (p < .01), thereby alleviating letrozole-induced metabolic dysfunction in PCOS rats. Furthermore, SA treatment targeted insulin resistance (IR) and increased the messenger RNA (mRNA) levels of antioxidant enzymes in the ovaries of PCOS rats. Finally, SA treatment enhanced the activity of peroxisome proliferator-activated receptor-γ (PPAR-γ), reduced the activation of transforming growth factor-β1 (TGF-β1)/Smads, and decreased collagen I, α-smooth muscle actin (α-SMA), and connective tissue growth factor (CTGF) levels in the ovaries of PCOS rats. These observations suggest that SA significantly ameliorates metabolic dysfunction and oxidative stress and ultimately reduces ovarian fibrosis in rats with letrozole-induced PCOS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。