Effect of Hydroxyapatite Nanorods on the Fate of Human Adipose-Derived Stem Cells Assessed In Situ at the Single Cell Level with a High-Throughput, Real-Time Microfluidic Chip

利用高通量实时微流控芯片在单细胞水平上原位评估羟基磷灰石纳米棒对人类脂肪干细胞命运的影响

阅读:6
作者:Min Hao, Jianlong He, Chunhua Wang, Chao Wang, Baojin Ma, Shan Zhang, Jiazhi Duan, Feng Liu, Yu Zhang, Lin Han, Hong Liu, Yuanhua Sang

Abstract

The fate of stem cells at the single cell level with limited communication with other cells is still unknown due to the lack of an efficient tool for highly accurate molecular detection. Moreover, the conditional sensitivity of biological experiments requires a sufficient number of parallel experiments to support a conclusion. In this work, a microfluidic single cell chip is designed for use with a protein chip to investigate the effect of hydroxyapatite (HAp) on the osteogenic differentiation of human adipose-derived stem cells (hADSCs) in situ at the single cell level. By successfully detecting secretory proteins in situ, it is found that the HAp nanorods enhance osteogenic differentiation at the single cell level. In the chip, the single cell seeding approach confirms the osteogenic differentiation of the hADSCs, which endocytoses HAp, by reducing the influence of the factors secreted by neighboring differentiating cells. Most importantly, more than 7000 microchambers provide a sufficient number of parallel experiments for statistical analysis, which ensure a high level of repeatability of the HAp nanorod-induced osteogenic differentiation. The microfluidic chip comprising single cell culture microchambers with in situ detection capability is a promising tool for research on cell behavior or cell fate at the single cell level.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。