Comparison of antimicrobial resistant Escherichia coli isolated from Irish commercial pig farms with and without zinc oxide and antimicrobial usage

爱尔兰商业养猪场分离的耐药大肠杆菌在使用和未使用氧化锌及抗菌剂情况下的比较

阅读:4
作者:Daniel Ekhlas, Juan M Ortiz Sanjuán, Edgar G Manzanilla, Finola C Leonard, Héctor Argüello, Catherine M Burgess

Background

The prophylactic use of antimicrobials and zinc oxide (ZnO) in pig production was prohibited by the European Union in 2022 due to potential associations between antimicrobial and heavy metal usage with antimicrobial resistance (AMR) and concerns regarding environmental pollution. However, the effects of their usage on the bacterial AMR profiles on commercial pig farms are still not fully understood and previous studies examining the effect of ZnO have reported contrasting findings. The

Conclusions

The results of this study showed evidence that antimicrobial and ZnO treatment of pigs post-weaning can favour the selection and development of AMR and MDR E. coli. Co-location of resistance genes on mobile genetic elements was observed. This study demonstrated the usefulness of phenotypic and genotypic detection of antimicrobial resistance by combining sequencing and microbiological methods.

Results

In total 351 isolates were phenotypically analysed, and the genomes of 44 AmpC/ESBL-producing E. coli isolates from 4 farms were characterised using whole-genome sequencing. Phenotypic analysis suggested higher numbers of multi-drug resistant (MDR) E. coli isolates on farms using prophylaxis. Furthermore, farms using prophylaxis were associated with higher numbers of isolates resistant to apramycin, trimethoprim, tetracycline, streptomycin, and chloramphenicol, while resistance to ciprofloxacin was more associated with farms not using any prophylaxis. Thirty-four of the 44 AmpC/ESBL-producing E. coli strains harboured the blaCTX-M-1 resistance gene and were multi drug resistant (MDR). Moreover, network analysis of plasmids and analysis of integrons showed that antimicrobial and biocide resistance genes were frequently co-located on mobile genetic elements, indicating the possibility for co-selection during antimicrobial or biocide usage as a contributor to AMR occurrence and persistence on farms. Conclusions: The results of this study showed evidence that antimicrobial and ZnO treatment of pigs post-weaning can favour the selection and development of AMR and MDR E. coli. Co-location of resistance genes on mobile genetic elements was observed. This study demonstrated the usefulness of phenotypic and genotypic detection of antimicrobial resistance by combining sequencing and microbiological methods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。