A Computational Approach for the Discovery of Novel DNA Methyltransferase Inhibitors

发现新型 DNA 甲基转移酶抑制剂的计算方法

阅读:8
作者:Eftichia Kritsi, Paris Christodoulou, Thalia Tsiaka, Panagiotis Georgiadis, Maria Zervou

Abstract

Nowadays, the explosion of knowledge in the field of epigenetics has revealed new pathways toward the treatment of multifactorial diseases, rendering the key players of the epigenetic machinery the focus of today's pharmaceutical landscape. Among epigenetic enzymes, DNA methyltransferases (DNMTs) are first studied as inhibition targets for cancer treatment. The increasing clinical interest in DNMTs has led to advanced experimental and computational strategies in the search for novel DNMT inhibitors. Considering the importance of epigenetic targets as a novel and promising pharmaceutical trend, the present study attempted to discover novel inhibitors of natural origin against DNMTs using a combination of structure and ligand-based computational approaches. Particularly, a pharmacophore-based virtual screening was performed, followed by molecular docking and molecular dynamics simulations in order to establish an accurate and robust selection methodology. Our screening protocol prioritized five natural-derived compounds, derivatives of coumarins, flavones, chalcones, benzoic acids, and phenazine, bearing completely diverse chemical scaffolds from FDA-approved "Epi-drugs". Their total DNMT inhibitory activity was evaluated, revealing promising results for the derived hits with an inhibitory activity ranging within 30-45% at 100 µM of the tested compounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。