Soluble rank ligand produced by myeloma cells causes generalised bone loss in multiple myeloma

骨髓瘤细胞产生的可溶性等级配体导致多发性骨髓瘤患者全身骨质流失

阅读:8
作者:Clive Henry Buckle, Evy De Leenheer, Michelle Anne Lawson, Kwee Yong, Neil Rabin, Mark Perry, Karen Vanderkerken, Peter Ian Croucher

Abstract

Patients with multiple myeloma commonly develop focal osteolytic bone disease, as well as generalised osteoporosis. The mechanisms underlying the development of osteoporosis in patients with myeloma are poorly understood. Although disruption of the RANKL/OPG pathway has been shown to underlie formation of focal osteolytic lesions, its role in the development of osteoporosis in myeloma remains unclear. Increased soluble RANKL in serum from patients with myeloma raises the possibility that this molecule plays a key role. The aim of the present study was to establish whether sRANKL produced by myeloma cells contributes directly to osteoporosis. C57BL/KaLwRij mice were injected with either 5T2MM or 5T33MM murine myeloma cells. 5T2MM-bearing mice developed osteolytic bone lesions (p<0.05) with increased osteoclast surface (p<0.01) and reduced trabecular bone volume (p<0.05). Bone volume was also reduced at sites where 5T2MM cells were not present (p<0.05). In 5T2MM-bearing mice soluble mRANKL was increased (p<0.05), whereas OPG was not altered. In contrast, 5T33MM-bearing mice had no changes in osteoclast surface or trabecular bone volume and did not develop osteolytic lesions. Soluble mRANKL was undetectable in serum from 5T33MM-bearing mice. In separate experiments, RPMI-8226 human myeloma cells were transduced with an human RANKL/eGFP construct, or eGFP alone. RPMI-8226/hRANKL/eGFP cells, but not RPMI-8226/eGFP cells, stimulated osteoclastic bone resorption (p<0.05) in vitro. Sub-cutaneous injection of NOD/SCID mice with RPMI-8226/hRANKL/eGFP or RPMI-8226/eGFP cells resulted in tumour development in all mice. RPMI-8226/hRANKL/eGFP-bearing mice exhibited increased serum soluble hRANKL (p<0.05) and a three-fold increase in osteoclast number (p<0.05) compared to RPMI-8226/eGFP-bearing mice. This was associated with reduced trabecular bone volume (27%, p<0.05), decreased trabecular number (29%, p<0.05) and increased trabecular thickness (8%, p<0.05). Our findings demonstrate that soluble RANKL produced by myeloma cells causes generalised bone loss, suggesting that targeting RANKL may prevent osteoporosis in patients with myeloma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。