Trimetazidine does not alter metabolic substrate oxidation in cardiac mitochondria of target patient population

曲美他嗪不会改变目标患者群体心脏线粒体的代谢底物氧化

阅读:4
作者:M Cavar, M Ljubkovic, C Bulat, D Bakovic, D Fabijanic, J Kraljevic, N Karanovic, Z Dujic, C J Lavie, U Wisloff, J Marinovic

Background and purpose

Trimetazidine, known as a metabolic modulator, is an anti-anginal drug used for treatment of stable coronary artery disease (CAD). It is proposed to act via modulation of cardiac metabolism, shifting the mitochondrial substrate utilization towards carbohydrates, thus increasing the efficiency of ATP production. This mechanism was recently challenged; however, these studies used indirect approaches and animal models, which made their conclusions questionable. The goal of the current study was to assess the effect of trimetazidine on mitochondrial substrate oxidation directly in left ventricular myocardium from CAD patients. Experimental approach: Mitochondrial fatty acid (palmitoylcarnitine) and carbohydrate (pyruvate) oxidation were measured in permeabilized left ventricular fibres obtained during coronary artery bypass grafting surgery from CAD patients, which either had trimetazidine included in their therapy (TMZ group) or not (Control). Key

Purpose

Trimetazidine, known as a metabolic modulator, is an anti-anginal drug used for treatment of stable coronary artery disease (CAD). It is proposed to act via modulation of cardiac metabolism, shifting the mitochondrial substrate utilization towards carbohydrates, thus increasing the efficiency of ATP production. This mechanism was recently challenged; however, these studies used indirect approaches and animal models, which made their conclusions questionable. The goal of the current study was to assess the effect of trimetazidine on mitochondrial substrate oxidation directly in left ventricular myocardium from CAD patients. Experimental approach: Mitochondrial fatty acid (palmitoylcarnitine) and carbohydrate (pyruvate) oxidation were measured in permeabilized left ventricular fibres obtained during coronary artery bypass grafting surgery from CAD patients, which either had trimetazidine included in their therapy (TMZ group) or not (Control). Key

Results

There was no difference between the two groups in the oxidation of either palmitoylcarnitine or pyruvate, and in the ratio of carbohydrate to fatty acid oxidation. Activity and expression of pyruvate dehydrogenase, the key regulator of carbohydrate metabolism, were also not different. Lastly, acute in vitro exposure of myocardial tissue to different concentrations of trimetazidine did not affect myocardial oxidation of fatty acid.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。