Suppression of extensive neurofilament phosphorylation rescues α-Internexin/peripherin-overexpressing PC12 cells from neuronal cell death

抑制广泛的神经丝磷酸化可挽救 α-Internexin/周围蛋白过表达的 PC12 细胞免于神经元细胞死亡

阅读:7
作者:Wen-Ching Lee, Daphne Kan, Yun-Yu Chen, Shan-Kuo Han, Kuo-Shyan Lu, Chung-Liang Chien

Abstract

Intermediate filament (IF) overproduction induces abnormal accumulation of neuronal IF, which is a pathological indicator of some neurodegenerative disorders. In our study, α-Internexin- and peripherin-overexpressing PC12 cells (pINT-EGFP and pEGFP-peripherin) were used as models to study neuropathological pathways responsible for neurodegenerative diseases. Microarray data revealed that Cdk5-related genes were downregulated and Cdk5 regulatory subunit-associated protein 3 (GSK-3α and GSK-3β) were upregulated in pINT-EGFP cells. Increased expression of phosphorylated neurofilament and aberrant activation of Cdk5 and GSK-3β were detected in both pEGFP-peripherin and pINT-EGFP cells by Western blotting. In addition, pharmacological approaches to retaining viability of pINT-EGFP and pEGFP-peripherin cells were examined. Treatment with Cdk5 inhibitor and GSK-3β inhibitor significantly suppressed neuronal death. Dynamic changes of disaggregation of EGFP-peripherin and decrease in green fluorescence intensity were observed in pEGFP-peripherin and pINT-EGFP cells by confocal microscopy after GSK-3β inhibitor treatment. We conclude that inhibition of Cdk5 and GSK-3β suppresses neurofilament phosphorylation, slows down the accumulation of neuronal IF in the cytoplasm, and subsequently avoids damages to cell organelles. The results suggest that suppression of extensive neurofilament phosphorylation may be a potential strategy for ameliorating neuron death. The suppression of hyperphosphorylation of neuronal cytoskeletons with kinase inhibitors could be one of potential therapeutic treatments for neurodegenerative diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。