Bex1 is essential for ciliogenesis and harbours biomolecular condensate-forming capacity

Bex1 对纤毛发生至关重要,并具有生物分子凝聚物形成能力

阅读:8
作者:Emi Hibino #, Yusuke Ichiyama #, Atsushi Tsukamura #, Yosuke Senju, Takao Morimune, Masahito Ohji, Yoshihiro Maruo, Masaki Nishimura, Masaki Mori

Background

Primary cilia are sensory organelles crucial for organ development. The pivotal structure of the primary cilia is a microtubule that is generated via tubulin polymerization reaction that occurs in the basal body. It remains to be elucidated how molecules with distinct physicochemical properties contribute to the formation of the primary cilia.

Conclusions

Our data reveals that Bex1 plays an essential role for the primary cilia formation through providing the reaction field for the tubulin polymerization.

Results

Here we show that brain expressed X-linked 1 (Bex1) plays an essential role in tubulin polymerization and primary cilia formation. The Bex1 protein shows the physicochemical property of being an intrinsically disordered protein (IDP). Bex1 shows cell density-dependent accumulation as a condensate either in nucleoli at a low cell density or at the apical cell surface at a high cell density. The apical Bex1 localizes to the basal body. Bex1 knockout mice present ciliopathy phenotypes and exhibit ciliary defects in the retina and striatum. Bex1 recombinant protein shows binding capacity to guanosine triphosphate (GTP) and forms the condensate that facilitates tubulin polymerization in the reconstituted system. Conclusions: Our data reveals that Bex1 plays an essential role for the primary cilia formation through providing the reaction field for the tubulin polymerization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。