Endophilin A1 mediates seizure activity via regulation of AMPARs in a PTZ-kindled epileptic mouse model

Endophilin A1 通过调节 PTZ 激发的癫痫小鼠模型中的 AMPAR 介导癫痫发作活动

阅读:6
作者:Xinyuan Yu, Tao Xu, Shu Ou, Jinxian Yuan, Jing Deng, Rong Li, Juan Yang, Xi Liu, Qi Li, Yangmei Chen

Abstract

Endophilin A1 is a member of the endophilin A family and is primarily expressed in the central nervous system. Endophilin A1 can mediate neuronal excitability by regulating neuronal synaptic plasticity, which indicates that the protein may be involved in epilepsy. However, to date, its role in epilepsy remains unclear. To explore the role of endophilin A1 in epilepsy, we aimed to investigate the expression patterns of endophilin A1 in patients with temporal lobe epilepsy (TLE) and in a pentylenetetrazole (PTZ)-kindled epileptic mouse model and to conduct behavioral and electrophysiological analyses after lentivirus-mediated knockdown of endophilin A1 in the hippocampus of epileptic mice. This study found that the expression of endophilin A1 was significantly up-regulated in the temporal neocortex of TLE patients and in the hippocampus and adjacent temporal cortex of the PTZ-kindled epileptic mouse model. Behavioral analyses indicated that knockdown of endophilin A1 in the mouse hippocampus increased the latency of the first seizure and reduced the frequency and duration of seizure activity. Whole-cell patch-clamp recordings of pyramidal neurons in the hippocampal CA3 area indicated that knockdown of endophilin A1 in the mouse hippocampus resulted in a reduced frequency of action potentials and decreased amplitudes of miniature excitatory postsynaptic currents (mEPSCs) and evoked AMPA-dependent EPSCs. Moreover, western blotting analysis showed that the surface expression of the AMPAR GluR2 subunit was also decreased after endophilin A1 knockdown, and co-immunoprecipitation indicated an association between endophilin A1 and AMPAR GluR2 in the mouse hippocampus. Further, when AMPARs were activated by CX546, the antiepileptic function of endophilin A1 knockdown was decreased. Based on these results, endophilin A1 plays a critical role in epilepsy, and its suppression in the mouse hippocampus can restrain neuronal excitability and seizure activity via regulating AMPARs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。