Suppression of HDAC2 in Spinal Cord Alleviates Mechanical Hyperalgesia and Restores KCC2 Expression in a Rat Model of Bone Cancer Pain

抑制脊髓中的 HDAC2 可减轻骨癌痛大鼠模型中的机械痛觉过敏并恢复 KCC2 表达

阅读:10
作者:Xinran Hou, Yingqi Weng, Tongxuan Wang, Bihan Ouyang, Yalin Li, Zongbin Song, Yundan Pan, Zhong Zhang, Wangyuan Zou, Changsheng Huang, Qulian Guo

Abstract

Epigenetic modulation participates in the mechanism of multiple types of pathological pain, so targeting the involved regulators may be a promising strategy for pain treatment. Our previous research identified the analgesic effect of the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) on mechanical hyperalgesia in a rat model of bone cancer pain (BCP) via restoration of μ-opioid receptor (MOR) expression. However, the specific types of HDACs contributing to BCP have not been explored. The present study investigated the expression pattern of some common HDACs and found that HDAC2 was up-regulated in a time-dependent manner in the lumbar spinal cord of BCP rats. TSA application suppressed HDAC2 expression in cultured PC12 cells and reversed the augmented HDAC2 in BCP rats. An RNA-interfering strategy confirmed the essential role of HDAC2 in the modulation of mechanical hyperalgesia following tumor cell inoculation, and we further examined its possible downstream targets. Notably, HDAC2 knock-down did not restore MOR expression, but it robustly reversed the down-regulation of potassium-chloride cotransporter 2 (KCC2). The impaired KCC2 expression is a vital mechanism of many types of pathological pain. Therefore, our results demonstrated that HDAC2 in spinal cord contributed to the mechanical hyperalgesia in BCP rats, and this effect may be associated with KCC2 modulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。