Neurosteroids block the increase in intracellular calcium level induced by Alzheimer’s β-amyloid protein in long-term cultured rat hippocampal neurons

神经甾体阻断阿尔茨海默病β-淀粉样蛋白诱导的长期培养大鼠海马神经元细胞内钙离子水平升高

阅读:5
作者:Midori Kato-Negishi, Masahiro Kawahara

Abstract

The neurotoxicity of beta-amyloid protein (AbetaP) is implicated in the etiology of Alzheimer's disease. We previously have demonstrated that AbetaP forms Ca(2+)-permeable pores on neuronal membranes, causes a marked increase in intracellular calcium level, and leads to neuronal death. Here, we investigated in detail the features of AbetaP-induced changes in intracellular Ca(2+) level in primary cultured rat hippocampal neurons using a multisite Ca(2+)-imaging system with fura-2 as a fluorescent probe. Only a small fraction of short-term cultured hippocampal neurons (ca 1 week in vitro) exhibited changes in intracellular Ca(2+) level after AbetaP exposure. However, AbetaP caused an acute increase in intracellular Ca(2+) level in long-term cultured neurons (ca 1 month in vitro). The responses to AbetaP were highly heterogeneous, and immunohistochemical analysis using an antibody to AbetaP revealed that AbetaP is deposited on some but not all neurons. Considering that the disruption of Ca(2+) homeostasis is the primary event in AbetaP neurotoxicity, substances that protect neurons from an AbetaP-induced intracellular Ca(2+) level increase may be candidates as therapeutic drugs for Alzheimer's disease. In line with the search for such protective substances, we found that the preadministration of neurosteroids including dehydroepiandrosterone, dehydroepiandrosterone sulfate, and pregnenolone significantly inhibits the increase in intracellular calcium level induced by AbetaP. Our results suggest the possible significance of neurosteroids, whose levels are reduced in the elderly, in preventing AbetaP neurotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。