Casamino acids facilitate the secretion of recombinant dengue virus serotype-3 envelope domain III in Pichia pastoris

酪蛋白氨基酸促进毕赤酵母中重组登革热病毒血清型 3 包膜结构域 III 的分泌

阅读:7
作者:Neha Kaushik, Deepak Rohila, Upasana Arora, Rajendra Raut, Urpo Lamminmäki, Navin Khanna, Gaurav Batra

Background

Dengue is a viral disease spread to humans by mosquitoes. Notably, there are four serotypes of dengue viruses (DENV) that places ~40 % of the global population at risk of infection. However, lack of a suitable drug or a preventive vaccine exacerbates the matter further. Envelope domain-III (EDIII) antigen of dengue virus (DENV) has garnered much attention as a promising vaccine candidate for dengue, in addition to its use as a diagnostic intermediate. Hence developing a method for efficient production of high quality recombinant EDIII is important for research and industrial

Conclusions

The strategy described herein could enable fulfilling the mounting demand for recombinant EDIII as well as lay direction to future studies on secretory expression of recombinant proteins in P. pastoris with CA as a media supplement.

Results

In this work, a Pichia pastoris system was optimized for the secretory over-expression of DENV serotype-3 EDIII under the control of methanol inducible AOX1 promoter. Temperature alone had a significant impact upon the amount of secretory EDIII, with 2.5-fold increase upon reducing the induction temperature from 30 to 20 °C. However surprisingly, supplementation of culture media with Casamino acids (CA), further augmented secretory EDIII titer, with a concomitant drop of intracellular EDIII levels at both temperatures. Though, reduction in intracellular retention of EDIII was more prominent at 20 °C than 30 °C. This suggests that CA supplementation facilitates overexpressing P. pastoris cells to secrete more EDIII by reducing the proportion retained intracellularly. Moreover, a bell-shaped correlation was observed between CA concentration and secretory EDIII titer. The maximum EDIII expression level of 187 mg/L was achieved under shake flask conditions with induction at 20 °C in the presence of 1 % CA. The overall increase in EDIII titer was ~9-fold compared to un-optimized conditions. Notably, mouse immune-sera, generated using this purified EDIII antigen, efficiently neutralized the DENV. Conclusions: The strategy described herein could enable fulfilling the mounting demand for recombinant EDIII as well as lay direction to future studies on secretory expression of recombinant proteins in P. pastoris with CA as a media supplement.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。