Abstract
Epithelial tissues are highly organized structures that are structured at both the cellular and tissue levels. Individual cells are characterized by an apical membrane facing a central lumen, and a basolateral membrane that contacts adjacent cells and the basement membrane. The maintenance of apical-basal polarity is crucial for maintaining epithelial homeostasis and is considered a barrier to carcinogenesis. Apical-basal cell polarity is compromised in many epithelial cancers, such as breast, lung, and prostate, and has been associated with disease progression. Three-dimensional (3D) organotypic cultures recapitulate the 3D tissue architecture and mechanical properties found in vivo. This chapter describes methods to establish 3D organoids from human cell lines or mouse primary cells with inducible oncogene expression in polarized epithelial structures to investigate mechanisms of tumor initiation, luminal filling, and growth. The method is versatile, and simple modifications can be made to study diverse cell/tissue types and oncogenes.
