Canonical TGF-β pathway activity is a predictor of SHH-driven medulloblastoma survival and delineates putative precursors in cerebellar development

典型 TGF-β 通路活性是 SHH 驱动的髓母细胞瘤存活的预测因子,并描绘了小脑发育中的假定前体

阅读:8
作者:Donya Aref, Connor J Moffatt, Sameer Agnihotri, Vijay Ramaswamy, Adrian M Dubuc, Paul A Northcott, Michael D Taylor, Arie Perry, James M Olson, Charles G Eberhart, Sidney E Croul

Abstract

Medulloblastoma (MB) is the most common malignant brain tumor of childhood. Very little is known about aggressive forms of this disease, such as metastatic or recurrent MBs. In order to identify pathways involved in aggressive MB pathophysiology, we performed unbiased, whole genome microarrays on MB tumors at both the human and murine levels. Primary human MBs were compared, transcriptomically, to their patient-matched recurrent or metastatic tumors. Expression profiling was also performed on murine tumors from two spontaneously developing MB mouse models (Ptch+/- and Smo/Smo) that present with differing clinical severities. At both the human and murine levels we identified transforming growth factor-beta (TGF-β) as a potential contributor to MB progression/metastasis. Smad3, a major downstream component of the TGF-β pathway, was also evaluated using immunohistochemistry in malignant human tissues and was shown to correlate with MB metastasis and survival. Similarly, Smad3 expression during development identified a subset of cerebellar neuronal precursors as putative cells of origin for the Smad3-positive MBs. To our knowledge, this is the first study that links TGF-β to MB pathogenesis. Our research suggests that canonical activation of this pathway leads to better prognosis for patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。