miR-340-5p Mediates Cardiomyocyte Oxidative Stress in Diabetes-Induced Cardiac Dysfunction by Targeting Mcl-1

miR-340-5p 通过靶向 Mcl-1 介导糖尿病诱发的心脏功能障碍中的心肌细胞氧化应激

阅读:3
作者:Yinghong Zhu, Xuewen Yang, Jing Zhou, Long Chen, Pengfei Zuo, Lin Chen, Lan Jiang, Ting Li, Dejiang Wang, Yingyi Xu, Qiushi Li, Yi Yan

Abstract

Diabetic cardiomyopathy (DCM) is initially characterized by early diastolic dysfunction, left ventricular remodeling, hypertrophy, and myocardial fibrosis, and it is eventually characterized by clinical heart failure. MicroRNAs (miRNAs), endogenous small noncoding RNAs, play significant roles in diabetes mellitus (DM). However, it is still largely unknown about the mechanism that links miRNAs and the development of DCM. Here, we aimed to elucidate the mechanism underlying the potential role of microRNA-340-5p in DCM in db/db mouse, which is a commonly used model of type 2 DM and diabetic complications that lead to heart failure. We first demonstrated that miR-340-5p expression was dramatically increased in heart tissues of mice and cardiomyocytes under diabetic conditions. Overexpression of miR-340-5p exacerbated DCM, which was reflected by extensive myocardial fibrosis and more serious dysfunction in db/db mice as represented by increased apoptotic cardiomyocytes, elevated ROS production, and impaired mitochondrial function. Inhibition of miR-340-5p by a tough decoy (TUD) vector was beneficial for preventing ROS production and apoptosis, thus rescuing diabetic cardiomyopathy. We identified myeloid cell leukemia 1 (Mcl-1) as a major target gene for miR-340-5p and showed that the inhibition of Mcl-1 was responsible for increased functional loss of mitochondria, oxidative stress, and cardiomyocyte apoptosis, thereby caused cardiac dysfunction in diabetic mice. In conclusion, our results showed that miR-340-5p plays a crucial role in the development of DCM and can be targeted for therapeutic intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。