Construction of the genetic switches in response to mannitol based on artificial MtlR box

基于人工MtlR盒的甘露醇应答基因开关的构建

阅读:3
作者:Fengxu Xiao, Yupeng Zhang, Liang Zhang, Zhongyang Ding, Guiyang Shi, Youran Li

Abstract

Synthetic biology has rapidly advanced from the setup of native genetic devices to the design of artificial elements able to provide organisms with highly controllable functions. In particular, genetic switches are crucial for deploying new layers of regulation into the engineered organisms. While the assembly and mutagenesis of native elements have been extensively studied, limited progress has been made in rational design of genetic switches due to a lack of understanding of the molecular mechanism by which a specific transcription factor interacts with its target gene. Here, a reliable workflow is presented for designing two categories of genetic elements, one is the switch element-MtlR box and the other is the transcriptional regulatory element- catabolite control protein A (CcpA) box. The MtlR box was designed for ON/OFF-state selection and is controlled by mannitol. The rational design of MtlR box-based molecular structures can flexibly tuned the selection of both ON and OFF states with different output switchability in response to varied kind effectors. Different types of CcpA boxes made the switches with more markedly inducer sensitivities. Ultimately, the OFF-state value was reduced by 90.69%, and the maximum change range in the presence of two boxes was 15.31-fold. This study presents a specific design of the switch, in a plug-and-play manner, which has great potential for controlling the flow of the metabolic pathway in synthetic biology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。