GTF2IRD2 from the Williams-Beuren critical region encodes a mobile-element-derived fusion protein that antagonizes the action of its related family members

来自 Williams-Beuren 关键区域的 GTF2IRD2 编码一种移动元件衍生的融合蛋白,可拮抗其相关家族成员的作用

阅读:5
作者:Stephen J Palmer, Kylie M Taylor, Nicole Santucci, Jocelyn Widagdo, Yee-Ka Agnes Chan, Jen-Li Yeo, Merritt Adams, Peter W Gunning, Edna C Hardeman

Abstract

GTF2IRD2 belongs to a family of transcriptional regulators (including TFII-I and GTF2IRD1) that are responsible for many of the key features of Williams-Beuren syndrome (WBS). Sequence evidence suggests that GTF2IRD2 arose in eutherian mammals by duplication and divergence from the gene encoding TFII-I. However, in GTF2IRD2, most of the C-terminal domain has been lost and replaced by the domesticated remnant of an in-frame hAT-transposon mobile element. In this first experimental analysis of function, we show that transgenic expression of each of the three family members in skeletal muscle causes significant fiber type shifts, but the GTF2IRD2 protein causes an extreme shift in the opposite direction to the two other family members. Mating of GTF2IRD1 and GTF2IRD2 mice restores the fiber type balance, indicating an antagonistic relationship between these two paralogs. In cells, GTF2IRD2 localizes to cytoplasmic microtubules and discrete speckles in the nuclear periphery. We show that it can interact directly with TFII-Iβ and GTF2IRD1, and upon co-transfection changes the normal distribution of these two proteins into a punctate nuclear pattern typical of GTF2IRD2. These data suggest that GTF2IRD2 has evolved as a regulator of GTF2IRD1 and TFII-I; inhibiting their function by direct interaction and sequestration into inactive nuclear zones.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。