ADAMTS-4 promotes neurodegeneration in a mouse model of amyotrophic lateral sclerosis

ADAMTS-4 促进肌萎缩侧索硬化症小鼠模型中的神经退行性

阅读:5
作者:Sighild Lemarchant, Yuriy Pomeshchik, Iurii Kidin, Virve Kärkkäinen, Piia Valonen, Sarka Lehtonen, Gundars Goldsteins, Tarja Malm, Katja Kanninen, Jari Koistinaho

Background

A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) proteoglycanases are specialized in the degradation of chondroitin sulfate proteoglycans and participate in mechanisms mediating neuroplasticity. Despite the beneficial effect of ADAMTS-4 on neurorepair after spinal cord injury, the functions of ADAMTS proteoglycanases in other CNS disease states have not been studied. Therefore, we investigated the expression, effects and associated mechanisms of ADAMTS-4 during amyotrophic lateral sclerosis (ALS) in the SOD1(G93A) mouse model.

Conclusions

This study suggests that the reduction of ADAMTS-4 activity during the progression of ALS pathology may be an adaptive change to mitigate its neurodegenerative impact in CNS tissues. Therapies compensating the compromized ADAMTS-4 activity are likely not promising approaches for treating ALS.

Results

ADAMTS-4 expression and activity were reduced in the spinal cord of SOD1(G93A) mice at disease end-stage when compared to WT littermates. To counteract the loss of ADAMTS-4, SOD1(G93A) and WT mice were treated with saline or a recombinant ADAMTS-4 before symptom onset. Administration of ADAMTS-4 worsened the prognosis of SOD1(G93A) mice by accelerating clinical signs of neuromuscular dysfunctions. The worsened prognosis of ADAMTS-4-treated SOD1(G93A) mice was accompanied by increased degradation of perineuronal nets enwrapping motoneurons and increased motoneuron degeneration in the lumbar spinal cord. Motoneurons of ADAMTS-4-treated SOD1(G93A) mice were more vulnerable to degeneration most likely due to the loss of their extracellular matrix envelopes. The decrease of neurotrophic factor production induced by ADAMTS-4 in vitro and in vivo may also contribute to a hostile environment for motoneuron especially when devoid of a net. Conclusions: This study suggests that the reduction of ADAMTS-4 activity during the progression of ALS pathology may be an adaptive change to mitigate its neurodegenerative impact in CNS tissues. Therapies compensating the compromized ADAMTS-4 activity are likely not promising approaches for treating ALS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。