Study of the Antibacterial Potency of Electroactivated Solutions of Calcium Lactate and Calcium Ascorbate on Bacillus cereus ATCC 14579 Vegetative Cells

乳酸钙和抗坏血酸钙电活化溶液对蜡状芽孢杆菌ATCC 14579营养细胞的抗菌效力研究

阅读:3
作者:Pierre Emerson Cayemitte, Natela Gerliani, Philippe Raymond, Mohammed Aider

Abstract

Bacillus cereus is a pathogenic bacterium, Gram-positive, aerobic, and facultative anaerobic that can produce spores and different toxins. It is involved in serious foodborne illnesses such as the diarrheal and emetic syndromes, depending on the ingested toxin. This work is aimed to study the potency of electroactivated solutions (EAS) of calcium lactate, calcium ascorbate, and their mixture as antibacterial agents against B. cereus ATCC 14579 vegetative cells. The solutions used were electroactivated under electric current intensities of 250, 500, and 750 mA for 30 min. The obtained EAS were tested in direct contact with B. cereus (107 CFU/mL) for different durations ranging from 5 s to 2 min. Moreover, standard lactic and ascorbic acids were tested as controls at equivalent titratable acidity as that of the corresponding electroactivated solutions. The obtained results showed that EAS exhibit high antibacterial efficacy against B. cereus vegetative cells. The EAS obtained after electroactivation of calcium lactate and calcium ascorbate were more efficient than those of their corresponding standard acids (lactic and ascorbic). The observed antibacterial effect of the EAS resulted in a reduction of 7 log CFU/mL after 5 s of direct contact in some specific cases. Scanning (SEM) and transmission (TEM) electron microscopic observations provided conclusive evidence of the antibacterial activity of the used EAS. These results outlined the highly antimicrobial potency of EAS against B. cereus vegetative cells and that they can be considered in an eventual strategy to ensure food safety, surface cleaning, as well as replacement of hazardous disinfecting chemicals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。