Generation of a large-scale vascular bed for the in vitro creation of three-dimensional cardiac tissue

生成大规模血管床,用于体外创建三维心脏组织

阅读:4
作者:Akitoshi Inui, Hidekazu Sekine, Kazunori Sano, Izumi Dobashi, Azumi Yoshida, Katsuhisa Matsuura, Eiji Kobayashi, Minoru Ono, Tatsuya Shimizu

Conclusions

We succeeded in engineering spontaneously beating 3D cardiac tissue in vitro using human cardiac cell sheets and a vascular bed derived from porcine small intestine. Further development of this method might allow the fabrication of functional cardiac tissue that could be used in the treatment of severe heart failure.

Methods

For the vascular bed, a segment of porcine small intestine was harvested together with a branch of the superior mesenteric artery and a branch of the superior mesenteric vein. The small intestinal tissue was incised longitudinally, and the mucosa was resected. Human cardiomyocytes derived from hiPSCs were co-cultured with endothelial cells and fibroblasts on a temperature-responsive dish and harvested as a cardiac cell sheet. A triple-layer of cardiac cell sheets was placed onto the vascular bed, and the resulting construct was subjected to perfusion culture in a bioreactor system.

Results

The cardiac tissue on the vascular bed pulsated spontaneously and synchronously after one day of perfusion culture. Electrophysiological recordings revealed regular action potentials and a beating rate of 105 ± 13/min (n = 8). Furthermore, immunostaining experiments detected partial connection of the blood vessels between the vascular bed and cardiac cell sheets. Conclusions: We succeeded in engineering spontaneously beating 3D cardiac tissue in vitro using human cardiac cell sheets and a vascular bed derived from porcine small intestine. Further development of this method might allow the fabrication of functional cardiac tissue that could be used in the treatment of severe heart failure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。