Oligodendrocyte precursor cell transplantation into organotypic cerebellar shiverer slices: a model to study myelination and myelin maintenance

少突胶质细胞前体细胞移植到器官型小脑颤抖切片中:研究髓鞘形成和髓鞘维护的模型

阅读:7
作者:Jenea M Bin, Soo Yuen Leong, Sarah-Jane Bull, Jack P Antel, Timothy E Kennedy

Abstract

Current in vitro models to investigate the consequence of oligodendrocyte-specific loss-of-function mutations on myelination are primarily limited to co-culture experiments, which do not accurately recapitulate the complex in vivo environment. Here, we describe the development of an in vitro model of myelination and myelin maintenance in which oligodendrocyte precursor cells are transplanted into organotypic cerebellar slice cultures derived from dysmyelinated shiverer mice. Compared to neuron-oligodendrocyte co-cultures, organotypic slices more closely mimic the environment in vivo, while utilizing a genetic background that allows for straight-forward identification of myelin generated by transplanted cells. We show at the ultrastructural level that the myelin generated by wild-type transplanted oligodendrocytes is compact and terminates in cytoplasmic loops that form paranodal junctions with the axon. This myelination results in the appropriate sequestering of axonal proteins into specialized domains surrounding the nodes of Ranvier. We also demonstrate the applicability of this approach for xenograft transplantation of oligodendrocyte precursor cells derived from rat or human sources. This method provides a time-efficient and cost-effective adjunct to conditional knockout mouse lines or in vivo transplantation models to study oligodendrocyte-specific loss-of-function mutations. Furthermore, the approach can be readily used to assess the effect of pharmacological manipulations on myelin, providing a tool to better understand myelination and develop effective therapeutic strategies to treat myelin-related diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。