(Pro)renin receptor triggers distinct angiotensin II-independent extracellular matrix remodeling and deterioration of cardiac function

(原)肾素受体引发明显的血管紧张素 II 独立的细胞外基质重塑和心脏功能恶化

阅读:5
作者:Anne-Mari Moilanen, Jaana Rysä, Raisa Serpi, Erja Mustonen, Zoltán Szabò, Jani Aro, Juha Näpänkangas, Olli Tenhunen, Meeri Sutinen, Tuula Salo, Heikki Ruskoaho

Background

Activation of the renin-angiotensin-system (RAS) plays a key pathophysiological role in heart failure in patients with hypertension and myocardial infarction. However, the function of (pro)renin receptor ((P)RR) is not yet solved. We determined here the direct functional and structural effects of (P)RR in the heart. Methodology/principal findings: (P)RR was overexpressed by using adenovirus-mediated gene delivery in normal adult rat hearts up to 2 weeks. (P)RR gene delivery into the anterior wall of the left ventricle decreased ejection fraction (P<0.01), fractional shortening (P<0.01), and intraventricular septum diastolic and systolic thickness, associated with approximately 2-fold increase in left ventricular (P)RR protein levels at 2 weeks. To test whether the worsening of cardiac function and structure by (P)RR gene overexpression was mediated by angiotensin II (Ang II), we infused an AT(1) receptor blocker losartan via osmotic minipumps. Remarkably, cardiac function deteriorated in losartan-treated (P)RR overexpressing animals as well. Intramyocardial (P)RR gene delivery also resulted in Ang II-independent activation of extracellular-signal-regulated kinase1/2 phosphorylation and myocardial fibrosis, and the expression of transforming growth factor-β1 and connective tissue growth factor genes. In contrast, activation of heat shock protein 27 phosphorylation and apoptotic cell death by (P)RR gene delivery was Ang II-dependent. Finally, (P)RR overexpression significantly increased direct protein-protein interaction between (P)RR and promyelocytic zinc-finger protein. Conclusions/significance: These

Significance

These results indicate for the first time that (P)RR triggers distinct Ang II-independent myocardial fibrosis and deterioration of cardiac function in normal adult heart and identify (P)RR as a novel therapeutic target to optimize RAS blockade in failing hearts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。