Targeted disruption of the BCL9/β-catenin complex inhibits oncogenic Wnt signaling

靶向破坏 BCL9/β-catenin 复合物可抑制致癌 Wnt 信号传导

阅读:5
作者:Kohichi Takada, Di Zhu, Gregory H Bird, Kumar Sukhdeo, Jian-Jun Zhao, Mala Mani, Madeleine Lemieux, Daniel E Carrasco, Jeremy Ryan, David Horst, Mariateresa Fulciniti, Nikhil C Munshi, Wenqing Xu, Andrew L Kung, Ramesh A Shivdasani, Loren D Walensky, Daniel Ruben Carrasco

Abstract

Deregulated Wnt/β-catenin signaling underlies the pathogenesis of a broad range of human cancers, yet the development of targeted therapies to disrupt the resulting aberrant transcription has proved difficult because the pathway comprises large protein interaction surfaces and regulates many homeostatic functions. Therefore, we have directed our efforts toward blocking the interaction of β-catenin with B cell lymphoma 9 (BCL9), a co-activator for β-catenin-mediated transcription that is highly expressed in tumors but not in the cells of origin. BCL9 drives β-catenin signaling through direct binding mediated by its α-helical homology domain 2. We developed a stabilized α helix of BCL9 (SAH-BCL9), which we show targets β-catenin, dissociates native β-catenin/BCL9 complexes, selectively suppresses Wnt transcription, and exhibits mechanism-based antitumor effects. SAH-BCL9 also suppresses tumor growth, angiogenesis, invasion, and metastasis in mouse xenograft models of Colo320 colorectal carcinoma and INA-6 multiple myeloma. By inhibiting the BCL9-β-catenin interaction and selectively suppressing oncogenic Wnt transcription, SAH-BCL9 may serve as a prototype therapeutic agent for cancers driven by deregulated Wnt signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。