Exertional heat stroke-induced changes in gut microbiota cause cognitive impairment in mice

劳力性中暑引起的肠道菌群变化导致小鼠认知障碍

阅读:5
作者:Jiangang Xie #, Linxiao Wang #, Yunyun Xu #, Yuexiang Ma, Lingqin Zhang, Wen Yin, Yang Huang

Background

The incidence of exertional heat stroke (EHS) escalates during periods of elevated temperatures, potentially leading to persistent cognitive impairment postrecovery. Currently, effective prophylactic or therapeutic measures against EHS are nonexistent.

Conclusion

Probiotic supplementation, specifically with Lactobacillus spp., appears to mitigate EHS-induced cognitive impairment, potentially through the modulation of the BDNF/TrKB signaling pathway within the hippocampus, illustrating the therapeutic potential of targeting the gut-brain axis.

Methods

The selection of days 14 and 23 postinduction for detailed examination was guided by TEM of neuronal cells and HE staining of intestinal villi and the hippocampal regions. Fecal specimens from the ileum and cecum at these designated times were analyzed for changes in gut microbiota and metabolic products. Bioinformatic analyses facilitated the identification of pivotal microbial species and metabolites. The influence of supplementing these identified microorganisms on behavioral outcomes and the expression of functional proteins within the hippocampus was subsequently assessed.

Results

TEM analyses of neurons, coupled with HE staining of intestinal villi and the hippocampal region, indicated substantial recovery in intestinal morphology and neuronal injury on Day 14, indicating this time point for subsequent microbial and metabolomic analyses. Notably, a reduction in the Lactobacillaceae family, particularly Lactobacillus murinus, was observed. Functional annotation of 16S rDNA sequences suggested diminished lipid metabolism and glycan biosynthesis and metabolism in EHS models. Mice receiving this intervention (EHS + probiotics group) exhibited markedly reduced cognitive impairment and increased expression of BDNF/TrKB pathway molecules in the hippocampus during behavioral assessment on Day 28.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。