BMP-7 Treatment Increases M2 Macrophage Differentiation and Reduces Inflammation and Plaque Formation in Apo E-/- Mice

BMP-7 治疗可增加 Apo E-/- 小鼠的 M2 巨噬细胞分化并减少炎症和斑块形成

阅读:7
作者:Dinender K Singla, Reetu Singla, Jing Wang

Abstract

Inflammation plays a fundamental role in the inception and development of atherosclerosis (ATH). Mechanisms of inflammation include the infiltration of monocytes into the injured area and subsequent differentiation into either pro-inflammatory M1 macrophages or anti-inflammatory M2 macrophages. We have previously published data suggesting bone morphogenetic protein-7 (BMP-7) enhances M2 macrophage differentiation and anti-inflammatory cytokine secretion in vitro. In this regard, we hypothesized BMP-7 would inhibit plaque formation in an animal model of ATH through monocytic plasticity mediation. ATH was generated in male and female Apo E(-/-) mice via partial left carotid artery (PLCA) ligation and mice were divided into 3 groups: Sham, PLCA, and PLCA+BMP-7 (200 ug/kg; i.v.). Our data suggest that BMP-7 inhibits plaque formation and increases arterial systolic velocity. Furthermore, we report inhibition of monocyte infiltration and a decrease in associated pro-inflammatory cytokines (MCP-1, TNF-α, and IL-6) in the PLCA+BMP-7 mice. In contrast, our data suggest a significant (p<0.05) increase in M2 macrophage populations with consequential enhanced anti-inflammatory cytokine (IL-1RA, IL-10, and Arginase 1) expression following BMP-7 treatment. We have also observed that mechanisms promoting monocyte into M2 macrophage differentiation by BMP-7 involve the upregulation and activation of the BMP-7 receptor (BMP-7RII). In conclusion, we report that BMP-7 has the potential to mediate cellular plasticity and mitigate the inflammatory immune response, which results in decreased plaque formation and improved blood velocity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。