Identification of core genes involved in the response of Apocynum venetum to salt stress based on transcriptome sequencing and WGCNA

基于转录组测序和WGCNA鉴定罗布麻(Apocynum venetum)盐胁迫响应的核心基因。

阅读:1
作者:Xi Zhen ,Xuyang Liu ,Xiaoming Zhang ,Shujie Luo ,Wencheng Wang ,Tao Wan

Abstract

Apocynum venetum L. belongs to the Apocynaceae family and is a plant that is highly resistant to stress. It is important in the fields of ecology, feeding, industry and medicine. The molecular mechanism underlying salt tolerance has not been elucidated. In this study, RNA-seq based transcriptome sequencing of A. venetum leaves after 0, 2, 6, 12, 24 and 48 h of treatment with 300 mM NaCl was performed. We conducted a comprehensive analysis of the transcriptome expression profiles of A. venetum under salt stress using the WGCNA method and identified red, black, and brown as the core modules regulating the salt tolerance of A. venetum. A co-expression regulatory network was constructed to identify the core genes in the module according to the correlations between genes. The genes TRINITY_DN102_c0_g1 (serine carboxypeptidase), TRINITY_DN3073_c0_g1 (SOS signaling pathway) and TRINITY_DN6732_c0_g1 (heat shock transcription factor) in the red module were determined to be the core genes. Two core genes in the black module, TRINITY_DN9926_c0_g1 and TRINITY_DN7962_c0_g1, are pioneer candidate salt tolerance-associated genes in A. venetum. The genes in the brown module were mainly enriched in two pathways, namely photosynthesis and osmotic balance. Among them, the TRINITY_DN6321_c0_g2 and TRINITY_DN244_c0_g1 genes encode aquaporin, which is helpful for maintaining the cell water balance and plays a protective role in defending A. venetum under abiotic stress. Our findings contribute to the identification of core genes involved in the response of A. venetum to salt stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。