Genome editing in wheat microspores and haploid embryos mediated by delivery of ZFN proteins and cell-penetrating peptide complexes

通过 ZFN 蛋白和细胞穿透肽复合物的递送介导小麦小孢子和单倍体胚的基因组编辑

阅读:10
作者:Andriy Bilichak, Lakshmi Sastry-Dent, Shreedharan Sriram, Matthew Simpson, Pon Samuel, Steve Webb, Fengying Jiang, Francois Eudes

Abstract

Recent advances in genome engineering technologies based on designed endonucleases (DE) allow specific and predictable alterations in plant genomes to generate value-added traits in crops of choice. The EXZACT Precision technology, based on zinc finger nucleases (ZFN), has been successfully used in the past for introduction of precise mutations and transgenes to generate novel and desired phenotypes in several crop species. Current methods for delivering ZFNs into plant cells are based on traditional genetic transformation methods that result in stable integration of the nuclease in the genome. Here, we describe for the first time, an alternative ZFN delivery method where plant cells are transfected with ZFN protein that eliminates the need for stable nuclease genomic integration and allows generation of edited, but not transgenic cells or tissues. For this study, we designed ZFNs targeting the wheat IPK1 locus, purified active ZFN protein from bacterial cultures, complexed with cell-penetrating peptides (CPP) and directly transfected the complex into either wheat microspores or embryos. NGS analysis of ZFN-treated material showed targeted edits at the IPK1 locus in independent experiments. This is the first description of plant microspore genome editing by a ZFN when delivered as a protein complexed with CPP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。